Faktor-IPS Produktdaten in der

Datenbank



Table of Contents

Einleitung
Konzept
Versionierung
Status
Weitere Eigenschaften
Auslesen der Produktdaten
ProductDatabase
DbProductDataProviderFactory
Verwendung mit DetachedContentRuntimeRepository
Deployment der Produktdaten
ProductDataDeployment-Service
Data Source
Dokumentation Rest-API
Client
Builder
Modell-Versionen
Verwendung
Kommandozeilen-Client
deploy
status
delete
Exit Codes

© 00 00 J O O O B B kW W N DN

g Y
(S TNT S SR NC Ry S



Einleitung

Faktor-IPS speichert mit dem StandardBuilder alle Produktdaten in XML-Dateien. Diese
konnen zur Laufzeit von einem C(lassloaderProductDataProvider aus dem Classpath
geladen werden. Alternativ gibt es mit der faktorips-runtime-jpa-Erweiterung die
Moglichkeit, die Produktdaten in einer Datenbank zu speichern. Um diese auszulesen gibt
es den DbProductDataProvider. Zum Deployment in die Datenbank gibt es mehrere
Clients, die im Kapitel Deployment der Produktdaten beschrieben werden.

Die Produktdaten in der Datenbank bringen insbesondere folgende Vorteile:

* Deployment unabhéngig von EJB (ClassLoader Probleme etc.)
» Paralleles Deployment mehrerer Versionen (nur eine aktive Version je Modellversion)

* Trennen von Test-/Produktivumgebungen durch Verwendung unterschiedlicher
Datenbanken

« Erméglichen von zusétzlichen Uberpriifungen (z.B. kein Wegfall von RuntimelDs,
Produktdaten passen zu Modell)

Die Java Persistence API (JPA) ist eine Schnittstelle, die den Zugriff auf

o unterschiedliche Datenbanken vereinfacht. Da sie fiir das Schreiben und
Lesen der Produktdaten in der Datenbank verwendet wird, ist sie Teil
des Namens dieser Erweiterung.

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten 1



Konzept

Faktor-IPS legt fir jedes Produktprojekt (technisch genauer je Source Root) ein
Inhaltsverzeichnis (ToC) an. Dieses kann in unterschiedlichen Versionen vorliegen. Die
Eintrége eines ToC werden in der Datenbanktabelle TOC_ENTRY gespeichert, jeder Eintrag in
einer Zeile. Hier werden die aktuellen Runtime-IDs, die zugehorigen
Implementierungsklassen und eine Referenz auf die XML Content Tabelle verwaltet. Die
einzelnen Versionen des ToC werden in der Tabelle T0C_VERSION gespeichert.

TocVWersion TocEntry Content
id id id
name ipsObjectld xml
version ipsObjectQName
modelVersion version
status xmlIResource
user implementationClassName
comment type
deploy_timestamp
update_timestamp
ProductCmptTocEntry

id

kindld

versionld

validTo

generationlmplClassMName

A
GenerationTocEntry

id

productCmptid

validFrom

Versionierung
Eine ToC Version wird durch drei Aspekte identifiziert:

* Name: der Name des ToC. Dieser kann unabhdngig vom Namen des Faktor-IPS-
Projekts frei nach fachlichen oder technischen Anforderungen gewahlt werden.

* Modell-Version: die Version des Modell-Projekts, auf dem die Produktdaten beruhen.
Dadurch konnen in einer Datenbank Produktdaten, die auf unterschiedlichen
Modellversionen beruhen, parallel liegen. Wie diese Version im Deployment gesetzt

2 Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



wird, ist im Abschnitt Deployment der Produktdaten - Client beschrieben.
* Version: die Version des Produktprojekts.
Die Version des Produktprojekts ist unabhdngig von der Modellversion,
da die Produktdaten einem anderen Entwicklungszyklus unterliegen. Je
o Modellversion konnen mehrere Produktversionen entwickelt werden.

Fir jede neue Modellversion muss es aber auch eine neue
Produktversion geben.

Status

Jede ToC-Version hat einen Status mit einen der folgenden Werten:
* PENDING: der initiale Status aller ToC-Versionen. Die ToC-Version bleibt solang in
diesem Status, bis alle Inhalte erfolgreich deployed wurden.

» DEPLOYED: eine vollstdndig deployte ToC-Version. Die Version kann aktiviert werden um
die momentan aktive Version zu ersetzen.

e ACTIVE: die aktive ToC-Version.
e HISTORIC: Wird eine neue Version aktiviert, erhilt die bisher aktive Version diesen

Status.

Zu jeder Kombination aus Namen und Modell-Version darf immer
maximal eine Version als ACTIVE markiert werden. Diese wird vom
DbProductDataProvider zuriickgegeben.

Weitere Eigenschaften

Zu jeder ToC-Version kann in der Datenbank auch ein Kommentar und Benutzername
hinterlegt werden, um zusitzliche Informationen zum Deployment festzuhalten.
Automatisch wird auch der Zeitpunkt des Deployments gespeichert.

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten 3



Auslesen der Produktdaten

Zum Auslesen der Produktdaten zur Laufzeit wird ein DbProductDataProvider zur
Verfiigung gestellt. Der DbProductDataProvider 1ist eine Implementierung von
org.faktorips.runtime.productdataprovider.IProductDataProvider und bietet Zugriff auf
die Produktdaten. Zusatzlich ermdoglicht sie Produktdaten auf Aktualitdt zu prifen und
ggf. neu zu laden, wenn inzwischen neuere Daten zur Verfigung stehen.

ProductDatabase

Der Zugriff auf die Datenbank ist iiber die Stateless EJB ProductDatabaseBean gekapselt. Sie
erhélt einen EntityManager fir die Persistence Unit faktorips-productdataservice-jpa per
Konstruktor(-Injection). Das Business Interface ProductDatabase enthdlt die Methode
getActiveTocVersion, die aus der Datenbank die mit dem Status ACTIVE markierte Version
abruft.

Der Server muss ein Data Source mit dem JNDI Namen ips-product-data zur Verfigung
stellen.

DbProductDataProviderFactory

Ein DbProductDataProvider wird tber eine DbProductDataProviderFactory erstellt. Dieser
bendtigt neben der ProductDatabase zusdtzlich den Namen und die Modell-Version (siehe
Versionierung) des gewunschten Produktdaten-Projekts.

Verwendung mit
DetachedContentRuntimeRepository

Sollen Produktdaten aus der Datenbank in einer Anwendung verwendet werden, wird ein
DetachedContentRuntimeRepository bendtigt. Dieses wiederum wird von einem
DetachedContentRuntimeRepositoryManager erzeugt. Dieser kimmert sich aufderdem darum,
die Aktualitdt der Produktdaten bei jedem Abruf zu uberprifen und ggf. ein neues
DetachedContentRuntimeRepository mit neuem DbProductDataProvider zur nun aktiven
Produktdaten-Version zZu erzeugen. Dem Builder des
DetachedContentRuntimeRepositoryManager wird dazu die DbProductDataProviderFactory
ubergeben.

emForRepo = emFactory.createEntityManager(); @
DbProductDataProviderFactory productDataProviderFactory = new

DbProductDataProviderFactory(tocName, "1.2.3",
new ProductDatabaseBean(emForRepo)); @

4 Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



IRuntimeRepositoryManager runtimeRepositoryManager = new
DetachedContentRuntimeRepositoryManager.Builder(
productDataProviderFactory).build();
IRuntimeRepository runtimeRepository =
runtimeRepositoryManager.getCurrentRuntimeRepository();

testDeployedData(runtimeRepository);

@ Der EntityManager kann in einer JEE (6+) Umgebung auch per Injection gesetzt
werden

@ Die Modellversion kann in der Anwendung konfiguriert werden oder zur Laufzeit aus
dem Modell-TOC gelesen werden

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten 5



Deployment der Produktdaten

Fur das Einspielen der Produktdaten in die Datenbank ist der ProductDataDeployment
-Service vorgesehen, der uiber eine REST-API angesprochen werden kann. Zum einfachen
Aufruf dieser API dient der Client, der direkt programmatisch bedient oder iiber einen
Kommandozeilen-Client oder ein Maven-Plugin aufgerufen werden kann.

ProductDataDeployment-Service

Die Rest-API fir das Einspielen der Produktdaten wird tuber das Deployment des
productdata-jpa-deployment-service.war auf einen Java-EE-Server (EE6+ oder NetWeaver
7.50+) mit Kkonfigurierter Persistence Unit faktorips-productdataservice-jpa zur
Verfligung gestellt.

Data Source

Im Server muss dazu die Datasource mit dem JNDI Namen ips-product-data (bzw. je nach
Server auch java:/ips-product-data) konfiguriert werden.

Um die Datenbanktabellen zu erstellen kann das folgende Skript als Vorlage dienen:

Oracle

CREATE TABLE IPS_CONTENT (ID VARCHAR2(22) NOT NULL, XML CLOB NOT NULL, PRIMARY
KEY (ID));

CREATE TABLE IPS_TOC_ENTRY (ID VARCHAR2(22) NOT NULL, type VARCHAR2(31) NULL,
IMPLEMENTATIONCLASSNAME VARCHAR2(255) NOT NULL, IPSOBJECTID VARCHAR2(255) NOT
NULL, IPSOBJECTQNAME VARCHAR2(255) NOT NULL, VERSION_ID VARCHAR2(22) NULL,
XMLRESOURCE _ID VARCHAR2(22) NULL, PRIMARY KEY (ID));

CREATE INDEX PSTCENTRYFKPSTOCENTRYVERSIONID ON IPS_TOC_ENTRY (VERSION_ID);
CREATE INDEX PSTCNTRYPSTCENTRYXMLRESOURCEID ON IPS_TOC_ENTRY (XMLRESOURCE ID);
CREATE UNIQUE INDEX AK_TOCENTRY_OBJECT_VERSION ON IPS_TOC_ENTRY (IPSOBJECTID,
VERSION_ID);

CREATE TABLE IPS_GENERATION TOC_ENTRY (ID VARCHAR2(22) NOT NULL, VALIDFROM
TIMESTAMP NOT NULL, PRODUCT_CMPT_ID VARCHAR2(22) NULL, XMLRESOURCE_ID
VARCHAR2(22) NULL, PRIMARY KEY (ID));

CREATE INDEX PSGNRTNPSGNRTNTCNTRYPRDCTCMPTD ON IPS_GENERATION_TOC_ENTRY
(PRODUCT_CMPT_ID);

CREATE INDEX PSGNRTNTCPSGNRTNTCNTRYXMLRSRCD ON IPS_GENERATION_TOC_ENTRY
(XMLRESOURCE _ID);

CREATE TABLE IPS_PRODUCT _CMPT_TOC_ENTRY (ID VARCHAR2(22) NOT NULL,
GENERATIONIMPLCLASSNAME VARCHAR2(255) NULL, KINDID VARCHAR2(255) NOT NULL,
VALIDTO TIMESTAMP NULL, VERSIONID VARCHAR2(255) NOT NULL, PRIMARY KEY (ID));
CREATE INDEX PSPRDCTCMPTTPSPRDCTCMPTTCNTRYD ON IPS_PRODUCT_CMPT_TOC_ENTRY
(ID);

6 Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



CREATE TABLE IPS_TOC_VERSION (ID VARCHAR2(22) NOT NULL, DEPLOY_COMMENT
VARCHAR2(255) NULL, DEPLOY_TIMESTAMP TIMESTAMP NULL, UPDATE_TIMESTAMP
TIMESTAMP NULL, MODEL_VERSION VARCHAR2(255) NULL, NAME VARCHAR2(255) NULL,
STATUS VARCHAR2(255) NULL, DEPLOY_USER VARCHAR2(255) NULL, VERSION
VARCHAR2(255) NULL, PRIMARY KEY (ID));

CREATE UNIQUE INDEX AK_TOC_VERSION_NAME_VER_MVER ON IPS_TOC_VERSION (NAME,
VERSION, MODEL_VERSION);

CREATE INDEX IX_TOC_VERSION_NAME_VER_STATUS ON IPS_TOC_VERSION (NAME, VERSION,
STATUS);

ALTER TABLE IPS_TOC_ENTRY ADD CONSTRAINT FK_IPS_TOC_ENTRY_VERSION_ID FOREIGN
KEY (VERSION_ID) REFERENCES IPS_TOC_VERSION (ID);

ALTER TABLE IPS_TOC_ENTRY ADD CONSTRAINT IPS_TOC_ENTRY_XMLRESOURCE_ID FOREIGN
KEY (XMLRESOURCE_ID) REFERENCES IPS_CONTENT (ID);

ALTER TABLE IPS_GENERATION_TOC_ENTRY ADD CONSTRAINT
PSGNERATIONTOCENTRYPRDCTCMPTID FOREIGN KEY (PRODUCT_CMPT_ID) REFERENCES
IPS_TOC_ENTRY (ID);

ALTER TABLE IPS_GENERATION_TOC_ENTRY ADD CONSTRAINT
PSGNRATIONTOCENTRYXMLRSOURCEID FOREIGN KEY (XMLRESOURCE_ID) REFERENCES
IPS_CONTENT (ID);

ALTER TABLE IPS_PRODUCT_CMPT_TOC_ENTRY ADD CONSTRAINT
IPS_PRODUCT_CMPT_TOC_ENTRY_ID FOREIGN KEY (ID) REFERENCES IPS_TOC_ENTRY (ID);

Dokumentation Rest-API

Die Dokumentation der Rest-API wird mit dem Service zusammen deployt und kann unter
dem Deployment-URL erreicht werden.

Deployment auf JBoss Server

Wird JBoss als Server verwendet muissen zwei Properties gesetzt werden:

* org.apache.tomcat.util.buf.UDecoder.ALLOW_ENCODED_SLASH=true,
o damit die in den IDs von Tabellen vorkommenden Slashs korrekt
verarbeitet werden

» eclipselink.target-server=JBoss damit EclipseLink die Transaktionen
korrekt abschliefst.

Die API ist mit Basic Authentication im Authentication Realm ips-deploy-realm gesichert
und erwartet einen Benutzer mit der Rolle ipsdeploy. Dieser ist im Application Server, wie
im Kapitel Deploymnet mit Wildfly einrichten beschrieben, einzurichten. Der Benutzer
selbst muss dem Realm ips-deploy-realm nicht zugeordnet sein, entscheidend ist hier die
Rolle ipsdeploy.

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten 7



Client

Der ProductDataDeploymentClient wird uber einen Builder mit folgenden Informationen
erstellt:

* ReadonlyTableOfContents

e Name

Modell-Version

Produkt-Version (siehe Versionierung)

Er bietet Methoden an, die die REST-API aufrufen um zum Beispiel eine neue ToC Version
anzulegen und alle darin aufgelistete Produkte, Tabellen und Enums einzuspielen.

Builder

Der Builder fiir den ProductDataDeploymentClient wird Uber die Methode
ProductDataDeploymentClient.Builder.forApi(WebTarget) erstellt. Mittels diverser with~
-Methoden kann die zukiinftige Client-Instanz konfiguriert werden. Durch den Aufruf von
build() wird die Client-Instanz erzeugt und kann dann verwendet werden. Im Folgenden
werden die einzelnen with~-Methoden erlautert.

Dieses Muster wird "Builder-Pattern” genannt. Die with~-Methoden geben
(r) jeweils ein neues Builder-Objekt zuriick, um den Aufruf im Stil einer
- Fluent API zu erlauben und teilweise konfigurierte Builder-Instanzen
wiederverwenden zu konnen.

withTocPath

Konfiguriert den Pfad zu einer Table-of-Contents-Datei auf dem Classpath, mit dem der
Builder gestartet wurde. Dieser Parameter muss konfiguriert werden, wenn der Client
zum Einspielen von Produktdaten verwendet wird. Aus dem angegebenen ToC werden
dann die einzuspielenden Produkte, Tabellen und Enums gelesen. Falls der Client zum
Andern des Status oder Loschen einer Produktdaten-Version eingesetzt wird, muss dieser
nicht angegeben werden.

Wenn tocPath konfiguriert ist, kann die Produktversion automatisch aus dem ToC
ausgelesen werden. Auch das Auslesen der Modell-Version ist moglich. Dazu muss
einerseits zur <toc-name>.xml-Datei eine <toc-name>.model.properties-Datei vorhanden
sein, andererseits die darin benannten Modell-ToCs auf dem Classpath verfiighar sein
(siehe Modell-Versionen).

withTocName

Der Name fir das Produktdatenprojekt. Muss immer konfiguriert werden. Der tocName

8 Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



entspricht dem Namen der xml-Datei, die das ToC enthalt.

withModelVersion

Die Modell-Version. Kann weggelassen werden, wenn der tocPath angegeben ist und der
Versionsstring damit automatisch erstellt wird (siehe Modell-Versionen).

Fiur das Loschen sowie Statusupdate von mehreren ToC Versionen kann ein Leerstring
oder * als Wildcard angegeben werden.

withVersion

Die Produktdaten-Version. Kann weggelassen werden, wenn der tocPath angegeben ist
und damit die im Table of Contents gespeicherte Versionsnummer verwendet wird.

Fir das Loschen sowie Statusupdate von mehreren ToC Versionen kann ein Leerstring
oder * als Wildcard angegeben werden.

withAuthentication

Benutzername und Passwort fiir den Zugriff auf die REST-APL. Im Application Server
muss der Benutzer mit der Rolle ipsdeploy eingetragen sein.

Logging und Fehlerbehandlung

Uber die Methoden withSuccessHandler und withFailureHandler konnen einem Client
Handler fiir das Logging von Deployment-Fortschritt und -Fehlern mitgegeben werden.
Werden keine Handler explizit gesetzt, wird auf System.out geloggt und Fehlermeldungen
auf System.err ausgegeben.

(r) Ist einer der bendtigten Parameter nicht gesetzt, wirft der Builder eine
- MissingArgumentException.

Modell-Versionen

Wird dem Client-Builder nicht manuell eine Modell-Version mitgegeben, versucht er diese
automatisch zu erstellen. Dazu sucht er parallel zum Produkt-ToC in <toc-path>.xml eine
Datei <toc-path>.model.properties. In dieser sind Pfade zu ebenfalls auf dem Classpath
liegenden Modell-ToCs abgelegt, aus denen wiederum die Versionsnummern ausgelesen
werden.

Beruht das Produktprojekt direkt auf einem einzelnen Modellprojekt, hat die Property das
folgende Format:

modelToc=org/faktorips/sample/model/internal/faktorips-repository-toc.xml

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten 9



Die Modellversion wird dann direkt aus dem Attribut productDataVersion des Tags
FaktorIps-TableOfContents ausgelesen, wohin sie beim Bauen des Modellprojekts aus dem
Tag Version der .ipsproject-Datei kopiert wurde.

Beruht das Produktprojekt direkt auf einem mehreren Modellprojekten konnen diese mit
Namen und einer Reihenfolge versehen werden:

modelToc.1.base=org/faktorips/sample/model/internal/faktorips-repository-
toc.xml
modelToc.2.1lob=org/faktorips/sample/lob/model/internal/faktorips-lob-
repository-toc.xml

Verwendung

Der Client bietet mehrere Methoden, die nacheinander aufgerufen werden kénnen, um
Produktdaten einzuspielen, aktiv zu schalten und ggf. wieder zu loschen. Jede Methode
gibt zuruck, ob das anlegen geklappt hat und loggt zusatzlich uber die Success- und
FailureHandler weitere von der REST-API zurtiickgegebene Informationen.

createTocVersion

Legt eine neue Table-of-Contents-Version in der Datenbank an. Dabei werden die bei der
Erstellung des Clients angegebenen Versionsparameter genutzt. Optional konnen die
Parameter user und comment angegeben werden: user, um in der Datenbank sehen zu
konnen, wer eine bestimmte Version angelegt hat; comment, um die Version mit einem
Kommentar zu versehen..

deployProducts

Spielt alle Produkte aus dem Table of Contents ein. Schlidgt das Einspielen eines
Produktbausteins fehl, bricht die Methode sofort ab.

deployTables

Spielt alle Tabelleninhalte aus dem Table of Contents ein. Schldgt das Einspielen eines
Tabelleninhalts fehl, bricht die Methode sofort ab.

deployEnums

Spielt alle Aufzdhlungsinhalte aus dem Table of Contents ein. Schligt das Einspielen eines
Aufzahlungsinhalts fehl, bricht die Methode sofort ab.

updateStatus

Andert den Status einer Table-of-Contents-Version. Dazu sind vier Status-Uberginge

10 Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



definiert, von denen einer als Parameter tibergeben werden muss:

* COMPLETE setzt eine Version vom Status PENDING auf DEPLOYED. Dieser Status-Ubergang
wird intern am Ende eines Deployments durchgefiihrt.

» ACTIVATE setzt eine Version vom Status DEPLOYED auf ACTIVE. Eine eventuell zuvor aktive
Version (mit gleicher Modell-Version und ToC-Namen) erhélt den Status HISTORIC.

e DEACTIVATE setzt eine Version vom Status ACTIVE auf HISTORIC. Dadurch ist dann keine
Version mehr aktiv, was zu Fehlern zur Laufzeit flihren kann.

* REACTIVATE setzt eine Version vom Status HISTORIC auf ACTIVE. Eine eventuell zuvor
aktive Version (mit gleicher Modell-Version und ToC-Namen) erhalt den Status
HISTORIC.

Der neue Status wird zurtiickgegeben, wenn der Statuswechsel funktioniert hat. Ging
etwas schief, weil z.B. die Version nicht den passenden Ausgangszustand hat, wird ein
leerer Optional-Wert zuriickgegeben.

Wird eine Wildcard ("*") als Modellversion oder Produktdatenversion angegeben, so
werden alle ToC Versionen selektiert, die die angegebenen Kriterien erfillen und einen
zum Statusubergang passenden Status haben. Das Statusupdate wird nur dann
ausgefiihrt, wenn es genau eine solche ToC Version gibt.

delete

Loscht Table-of-Contents-Versionen mit allen zugehorigen Produkten, Tabellen- und
Aufzdhlungsinhalten. Falls eine Wildcard als Modell-/Produktversion angegeben wird,
werden alle passende Table-of-Contents-Versionen, die nicht den Status ACTIVE haben,
geloscht. Optional kann ein Status als Parameter angegeben werden. In dem Fall werden
alle Table-of-Contents-Versionen, die sich in diesem Status befinden, geloscht.

Wird eine Wildcard ("*") als Modellversion oder Produktdatenversion angegeben, so
werden alle ToC Versionen geldscht, die die angegebenen Kriterien erfiillen. Aktive ToC
Versionen konnen nicht geloscht werden.

Kommandozeilen-Client

Der Kommandozeilen-Client fir das Produktdaten-Deployment wird mit dem Client im
productdata-jpa-deployment-client-<version>.jar ausgeliefert. Mit einem einfachen
Aufruf mit java -jar werden die verfigbaren Befehle angezeigt:

Usage: <command> <serviceURL> -n=<tocName> [Parameter...]

Commands:
deploy Deploys all product data referenced in a table of contents.
status Updates the status of a product data version.

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten 11



delete Deletes a product data version.

Der Kommandozeilen-Client verwendet zum Auffinden der notewendigen Dateien den
Java Classpath. Damit wird sichergestellt, dass alle benétigten Ressourcen gefunden
werden. Aufierdem konnen dadurch die Ressourcen sowohl in JAR/ZIP oder als Dateien
vorliegen. Um einen spezifischen Classpath in Kombination mit dem Client-JAR zu
verwenden, muss der Befehl wie folgt aussehen:

java -cp "./path/to/produkt.jar:./productdata-jpa-sample-product.jar"
org.faktorips.runtime.productdata.jpa.deployment.client.ProductDataDeploymentC
lientCLI [...]

Die Befehle werden im folgenden genauer erldautert. Die Service-URL muss zur REST-API
fihren. Der ToC-Name kann frei gewdhlt werden und dient, zusammen mit Modell- und
Produkt-Version, zur Identifikation der ToC-Version fiir weitere Befehle und den
DbProductDataProvider.

deploy

Mit dem Befehl deploy werden alle in einem Table of Contents verzeichneten
Produktdaten (Produktbausteine, Tabellen- und Aufzdhlungsinhalte) eingespielt. Die
Parameter dazu miissen wie folgt angegeben werden:

Missing required options [-n=<tocName>, params[@]=<serviceURL>]

Usage: deploy [-c=<comment>] [-m=<modelVersion>] -n=<tocName>
[-P=<deployPassword>] [-t=<tocPath>] [-u=<userName>]
[-U=<deployUser>] [-v=<version>] <serviceURL>

Deploys all product data referenced in a table of contents.

<serviceURL> The URL to the REST API
-u, --user=<userName> [OPTIONAL] The name of the user deploying the
product data. Uses the current user as
default.
Default: <current user>
-c, --comment=<comment> [OPTIONAL] A comment to distinguish the deployed
product data.
-t, --tocPath=<tocPath> The path (on the classpath) to the table of
contents xml file.
[REQUIRED] for deploy and when either
-m/--modelVersion or -v/--version are missing.
-n, --name=<tocName> The name of the product project to be used in
the
database.
-m, --modelVersion=<modelVersion>
The version of the model(s) the product data is

12 Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



based on.
If this parameter is omitted, the model version
is read from the table of contents files of
the
model(s), which must be on the classpath and
referenced in the <tocPath-without-xml>.model.
properties file.
-v, --version=<version> The version of the product data.
If this parameter is omitted, the version is
read
from the table of contents file referenced
with
the <tocPath>.
-U, --deployUser=<deployUser>
The user used to authenticate against the
deployment service. Do not set this parameter
if there is no authentication configured.
-P, --deployPassword=<deployPassword>
The password used to authenticate against the
deployment service.

Die Parameter entsprechen den fiir den Client-Builder definierten, sowie dem User und
Kommentar des Client-Befehls createTocVersion. Wird der User nicht angegeben,
verwendet das Kommandozeilen-Tool den Namen des am System angemeldeten
Benutzers.

status

Der Befehl status entspricht dem Client-Befehl updateStatus und bendétigt den Namen
eines Status-Ubergangs als Parameter:

Missing required options [-x=<statusTransition>, -n=<tocName>,

params[0]=<serviceURL>]

Usage: status [-m=<modelVersion>] -n=<tocName> [-P=<deployPassword>]
[-t=<tocPath>] [-U=<deployUser>] [-v=<version>]
-x=<statusTransition> <serviceURL>

Updates the status of a product data version.

<serviceURL> The URL to the REST API
-X, --transition=<statusTransition>
The change for a product version's status.
-t, --tocPath=<tocPath> The path (on the classpath) to the table of
contents xml file.
[REQUIRED] for deploy and when either
-m/--modelVersion or -v/--version are missing.
-n, --name=<tocName> The name of the product project to be used in

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten 13



the
database.
-m, --modelVersion=<modelVersion>
The version of the model(s) the product data is
based on.
If this parameter is omitted, the model version
is read from the table of contents files of
the
model(s), which must be on the classpath and
referenced in the <tocPath-without-xml>.model.
properties file.
May be wildcard '*' for status update or delete
-v, --version=<version> The version of the product data.
If this parameter is omitted, the version is
read
from the table of contents file referenced
with
the <tocPath>.
May be wildcard '*' for status update or delete
-U, --deployUser=<deployUser>
The user used to authenticate against the
deployment service. Do not set this parameter
if there is no authentication configured.
-P, --deployPassword=<deployPassword>
The password used to authenticate against the
deployment service.

delete
Der Befehl delete entspricht dem Client-Befehl delete:
Missing required options [-n=<tocName>, params[@]=<serviceURL>]

Usage: delete [-m=<modelVersion>] -n=<tocName> [-P=<deployPassword>]
[-s=<status>] [-t=<tocPath>] [-U=<deployUser>] [-v=<version>]

<serviceURL>
Deletes a product data version.
<serviceURL> The URL to the REST API
-s, --status=<status> [OPTIONAL] The status of the version(s) that

should be deleted.
-t, --tocPath=<tocPath> The path (on the classpath) to the table of
contents xml file.
[REQUIRED] for deploy and when either
-m/--modelVersion or -v/--version are missing.
-n, --name=<tocName> The name of the product project to be used in
the

14 Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



_m,

the

_V,

read

with

-u,

-p,

database.
--modelVersion=<modelVersion>
The version of the model(s) the product data is
based on.
If this parameter is omitted, the model version
is read from the table of contents files of

model(s), which must be on the classpath and
referenced in the <tocPath-without-xml>.model.
properties file.
May be wildcard '*' for status update or delete
--version=<version> The version of the product data.
If this parameter is omitted, the version is

from the table of contents file referenced

the <tocPath>.
May be wildcard '*' for status update or delete
--deployUser=<deployUser>
The user used to authenticate against the
deployment service. Do not set this parameter
if there is no authentication configured.
--deployPassword=<deployPassword>
The password used to authenticate against the
deployment service.

Exit Codes

Table 1. Table Exit Codes

Code
0
1

Beschreibung
Alle Befehle wurden korrekt tibertragen

Der Service ist unter der angegebenen URL
nicht erreichbar

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



Code

16

Beschreibung

Beim Ubertragen der Befehle ist ein Fehler
aufgetreten. Das Log gibt weitere
Informationen aus

:jbake-title: Maven-Plugin :jbake-type:
section :jbake-status: published

:sample-dir: ../../../../../productdata-jpa-
sample :icons: font

=== Maven-Plugin

Wird ein Produktprojekt mit Maven gebaut,
kann auch das Deployment in die
Datenbank dartiber erfolgen. Dazu muss
das productdata-jpa-deployment-maven-
pluginin der pom.xml eingebunden werden.

[source,xml,indent=0] ----
<pluginManagement> <!--1-- <plugins>
<plugin>
<groupld>org.faktorips.runtimejpa</groupl
d> <artifactld>productdata-jpa-deployment-
maven-plugin</artifactld>
<version>${project.version}</version>
<executions> <execution> <goals>
<goal>deploy</goal> </goals> </execution>
</executions> <configuration>
<serviceURL>${product.deployment.service
.url}</serviceURL> </configuration>
</plugin> </plugins> </pluginManagement>
---- <1> Das Plugin-Management kann fur
alle Projekte im Parent POM eingestellt
werden. Alternativ kann diese
Konfiguration mit der folgenden direkt im
Produkt-Projekt erfolgen.

[source,xml,indent=0] ---- <plugins>
<plugin>
<groupld>org.faktorips.runtimejpa</groupl
d> <artifactld>productdata-jpa-deployment-
maven-plugin</artifactld> <configuration>
<tocName>sample-products</tocName>
<comment>Deployed by Maven</comment>

Copyright © Faktor Zehn GmbH - Alle Rechte vorbehalten



	Faktor-IPS Produktdaten in der Datenbank
	Table of Contents
	Einleitung
	Konzept
	Versionierung
	Status
	Weitere Eigenschaften

	Auslesen der Produktdaten
	ProductDatabase
	DbProductDataProviderFactory
	Verwendung mit DetachedContentRuntimeRepository

	Deployment der Produktdaten
	ProductDataDeployment-Service
	Data Source
	Dokumentation Rest-API

	Client
	Builder
	Modell-Versionen
	Verwendung

	Kommandozeilen-Client
	deploy
	status
	delete
	Exit Codes



