
Software Tests with Faktor-IPS
Gunnar Tacke, Jan Ortmann

(Dokumentversion 203)

Overview
In each software development project, software testing entails considerable expenses. Running
regression tests manually is a particularly costly approach, so automated regression tests have been
around as a best practice for a long time.

In the Java community, JUnit has been successfully used for several years to run regression tests.
With JUnit, the tests are written in Java by the developer. Test cases can be executed directly inside
the Java development environment. Similarly, JUnit can be integrated in common build tools like
Ant and Maven.

We can also use JUnit in Faktor-IPS projects because Faktor-IPS generates testable Java source
code. In addition, Faktor-IPS offers its own, extended test support which includes both the
definition and execution of test cases.

This tutorial will first explain the underlying concepts and then use an example to demonstrate in
detail how this test environment works. Finally we explain how the execution of Faktor-IPS tests
can be integrated in build tools.

Conceptual Foundation
In JUnit, usually the Java source code also contains the test data. There is no separation between the
test logic and test data. As a result, you can't reuse the same test logic for different test data.
Because some Java knowledge is required to define test cases, this task can only be done by Java
developers.

For business functions such as the calculation of insurance premiums, the separation of test data and
test logic is a tremendous advantage because there are usually many test cases that vary only with
respect to the test data. The following table illustrates this by showing three test cases on the
premium computation described in the introductory tutorial.

Parameter Test Case 1 Test Case 2 Test Case 3

Product HC-Compact 2009-01 HC-Optimal 2009-01 HC Optimal 2009-01

ExtraCoverages Bicycle Theft 2009-01
Overvoltage Damage 2009-01

Bicycle Theft 2009-01
Overvoltage Damage 2009-01

Overvoltage Damage 2009-01

PaymentMode annual annual bi-annual

ZipCode 81673 81673 81673

SumInsured 60,000 EUR 60,000 EUR 100,000 EUR

Expected Results

NetPremiumPm 196.00 EUR 208.00 EUR 123.60 EUR

All these test cases are processed in the same way:

1. A home contract is created based on the details of the product and the specified extra
coverages. The attributes PaymentMode, ZipCode and SumInsured are populated with the

© Faktor Zehn AG Software Tests with Faktor-IPS 1

Conceptual Foundation

values defined in the test case.

2. Next, the premium is computed by calling the appropriate method on the home contract.

3. The home contract's NetPremiumPm is matched against the expected value that is defined in
the test case.

Unlike JUnit, Faktor-IPS separates the test logic from the test data by distinguishing between test
case types and test cases themselves. A test case type defines the control flow and the structure of
the test data, whereas a test case instantiates a test case type with specific test data. The test data
describe all input values that are required for the test, as well as the expected results.

Using OO terminology the test case type corresponds to a class and the test case itself is an instance
of a test case type. This division is a simple means to foster the separation of roles during test
development. The test case types are created by software developers who define the test data
structure and write the test logic. Business users can then use these test case types to capture
specific test cases with the respective test data.

Testing with Faktor-IPS Using Home Insurance as an Example
As a starting point we will use the home insurance projects we created in the introductory tutorial1.

First we want to test the premium computation for home contracts. This computation is
implemented in such a way that it determines a basic premium according to the sum insured and the
selected product. Depending on the rating district (which, in turn, is dependent on the zip code of

1 You can also download the projects ready for import in Eclipse from the Faktor-IPS website.

© Faktor Zehn AG Software Tests with Faktor-IPS 2

Figure 1: Test cases as instances of the test case type PremiumComputationTest

Testing with Faktor-IPS Using Home Insurance as an Example

the respective home contents), this basic premium will then be multiplied by a rating district factor.
If extra coverages, such as bicycle theft, are included, a specific percentage of the basic premium
will be added, for example, + 10% for bicycle theft. This percentage is configured in the product.
Depending on the payment mode, an installment charge may be added as well.

First we will create a test case type for premium computation. This type will constitute the basis of
our test cases.

A Test Case Type for the Premium Computation
First we extend the package structure below the source folder named „model“ within the project
“org.faktorips.tutorial.en.HomeModel” by adding an IPS package named „test“2.

Using the context menu option New ► Test Case Type, we create a new test case type in the Model
Explorer (alternatively, this can also be done by clicking in the toolbar):

Once we have defined the test case type name PremiumComputationTest in the ensuing dialog, the
Test Case Type Editor will open (see Figure 2). On the left, you can see the (still empty) structure
of the test, and on the right the details of each structural element. Now we can start building the
structure of our test case type. Test case types are represented in a tree structure, so we first have to
define the root element. To do this, we click New... to open the wizard for creating test parameters.
Our first task is to select which kind of test parameter we want to create. There are three possible
kinds of parameters (we don't yet take into consideration if they are to be used as input or expected
results):

● Policy component type

● Value

A single value
● Validation Rule

2 In practice it would obviously be better to create a separate source folder for tests. For simplicity, in our example,
we will store just everything in the modell source folder.

© Faktor Zehn AG Software Tests with Faktor-IPS 3

Figure 2: Creating a new test case type

Testing with Faktor-IPS Using Home Insurance as an Example

A validation rule to be tested

We choose Policy Component Type and click Next. On the second page, we select HomeContract as
data type. By default the parameterhas the same name as the data type, which is just right for our
example. In the Type field we can specify the parameter's purpose in the test case:

● Input

Attributes of the policy component type are only used as input data for test cases
● Expected result

Attributes of the policy component type are only used as expected result of the test cases
● Input and expected Result

Attributes of the policy component type can either be used as input parameters or as
expected results.

For our example we will choose the parameter type Input and expected Result because we want to
define both the input parameters and the expected result (in our case the computed premium) on the
home contracts we will create:

© Faktor Zehn AG Software Tests with Faktor-IPS 4

Figure 3: Creating a new root element in the Test Case Editor

Testing with Faktor-IPS Using Home Insurance as an Example

Abbildung 4: Defining the data type of the test parameter

On the next page of the wizard, you can restrict the parameter cardinality (except for the root
parameters, for there can only be one at a time). In addition, you can specify if the policy
component must be configured by a product component when defining a test case. By selecting the
Requires Product Component checkbox we ensure that for each home contract, the respective home
product has to be specified when setting up a test case:

The cardinality setting and the tag that says if a product component will be required or not, can of
course be changed later on directly in the editor.

The next step is to specify which attributes have to be tested and which ones are to be used as input
parameters. To do this, we choose the structure view (left), select HomeContract and click Add... on
the right-hand pane.

© Faktor Zehn AG Software Tests with Faktor-IPS 5

Figure 5: Setting cardinality and product dependency

Testing with Faktor-IPS Using Home Insurance as an Example

In the ensuing dialog, you can select attributes of the type HomeContract and add them to the test
case type.

In this case, we capture the parameters netPremiumPm, sumInsured, effectiveFrom, zipCode, and
paymentMode. Then, the editor's Details page will display the attributes and their types, the derived
attribute netPremiumPm will automatically be predefined with the Expected Result type, while the
remaining attributes will serve as our input parameters.

© Faktor Zehn AG Software Tests with Faktor-IPS 6

Figure 6: Creating a test attribute

Figure 7: Selecting a test attribute

Testing with Faktor-IPS Using Home Insurance as an Example

Next, we expand the structure of our test case type by adding all other necessary elements to it. In
our case, we add the types HomeBaseCoverage and HomeExtraCoverage. To do this, we select the
HomeContract element in the structure and create the relationships HomeBaseCoverage and
HomeExtraCoverages using the New... button. We select the Input type for our HomeBaseCoverage
(see Figure 9), set a cardinality of 1..1 and select the Requires Product Component checkbox. For the
HomeExtraCoverages we choose the Input type and a cardinality of 0..*, while selecting the Requires
Product Component checkbox as before. Remember that selecting the checkbox means that the
respective policy component has to be configured by a product component in the test case. We'll see
this later on, when we are going to create a test case.

© Faktor Zehn AG Software Tests with Faktor-IPS 7

Figure 8: The Test Case Type Editor displaying the Home Contract's attributes being used in the test

Testing with Faktor-IPS Using Home Insurance as an Example

The Test Case Type Editor should now look as follows:

This way, we have defined that our test case type is appropriate for testing an instance of a home
contract, including a base coverage and any number of extra coverages. Each Policy component

© Faktor Zehn AG Software Tests with Faktor-IPS 8

Figure 9: Defining HomeBaseCoverage as a child parameter of HomeContract.

Figure 10: Test Case Type Editor showing the PremiumComputationTest

Testing with Faktor-IPS Using Home Insurance as an Example

must relate to a specific product component.

When storing the test case type, a corresponding Java class will be created within the source
directory of the package org.faktorips.tutorial.internal.test. This Java class will have the
same name as the test case type and it will be used to implement the test logic. Let's now go to the
Package Explorer and have a closer look at the structure of this generated class:

● Member variables inputHomeContract and expectedHomeContract of type
HomeContract:
These correspond to the root parameter of type HomeContract. As we have declared the root
parameter as input and expected result, two appropriate instance variables have been
created: inputHomeContract stores the test case's input values according to the definition
that is provided by the test case type. expectedHomeContract contains the expected results
of the test case (again according to the test case type definition). Hence, at test case run time,
we get two HomeContract instances that we can match against each other.

● Empty method executeBusinessLogic():
The business logic we want to test will be called inside this method, for example, by calling
a method on the input objects (in this case inputHomeContract). This method is executed
before the executeAsserts(...) method gets called.

● Test method executeAsserts():
This method implements the comparison of actual and expected values. Initially it contains
a generated default implementation that will make the test fail, so the developer is forced to
substitute his/her own implementation.

Before providing a final implementation of our PremiumComputationTest class, we create a test
case based on our test case type.

Creating a Test Case
In the project “org.faktorips.tutorial.en.HomeProductData” we add a new IPS Package named tests
under the product-data directory. This package will be used to hold our test cases. To do this, we
return to the Model Explorer, select the product-data directory and choose New ► IPS Package from
the context menu. Using New ► Testcase (once again in the context menu), we create a new test
case. In the wizard we select the previously created test case type named
test.PremiumComputationTest and give the the test case a name.

© Faktor Zehn AG Software Tests with Faktor-IPS 9

public class PremiumComputationTest extends IpsTestCase2 {
 private HomeContract inputHomeContract;
 private HomeContract expectedHomeContract

 public void executeBusinessLogic() {
 //...
 }

 public void executeAsserts(IpsTestResult result) {
 //...

throw new RuntimeException(
 "No asserts implemented in the Java class that represents the test case type.");

 }
}

Testing with Faktor-IPS Using Home Insurance as an Example

After clicking Finish the Test Case Editor will open, displaying the structure of the test case on the
left. This structure corresponds to the one we have defined in the test case type. On the right, you
can see the test data. For each attribute defined in the test case type, an input field is provided, with
the input values on a white background and the expected values highlighted in yellow.

First we have to assign a product to the HomeContract. This is done by selecting the HomeContract
in the test structure and clicking on the Product Component button.

For our example, we assign the product component HC-Compact 2009-01 to the HomeContract.
We then use the Add option to add further objects, including a BaseCoverage-Compact 2009-01 for

© Faktor Zehn AG Software Tests with Faktor-IPS 10

Abbildung 12: Neuen Testfall anlegen

Figure 11: Creating a new test case

Figure 13: The Test Case Editor hinting at a lacking product component

Testing with Faktor-IPS Using Home Insurance as an Example

HomeBaseCoverage and two instances of HomeExtraCoverage, one with BicycleTheft 2009-01 and
one with OvervoltageDamage 2009-01. Finally we complete the test case according to the
following table:

Parameter Value
Product HC-Compact 2009-01
Base Coverage Type BaseCoverage-Compact 2009-01
Extra Coverage Types BicycleTheft 2009-01

OvervoltageDamage 2009-01
Sum Insured 60,000 EUR
Effective From 2009-04-01
ZIP Code 81673 (RatingDistrict I)
Payment Mode 1 (annually)
Net Premium according to
Payment Mode

196,00 EUR

Table 1: Test data for the premium computation

© Faktor Zehn AG Software Tests with Faktor-IPS 11

Figure 14: Selecting a product componenet using„Product Component“

Testing with Faktor-IPS Using Home Insurance as an Example

We now start to execute our test case by clicking the icon Run Test() in the upper right corner of
the test case editor. (There are two ways to start a test case, we simply use Run test. The other
variant, Run test and store differences, will be shown later in the chapter “Creating Test Cases by
Copying them”).

© Faktor Zehn AG Software Tests with Faktor-IPS 12

Figure 15: Test Case Editor after all the data has been entered

Figure 16: Running a test case using the Run Test - Icon

Testing with Faktor-IPS Using Home Insurance as an Example

Faktor-IPS tells us that the test has failed by displaying red bars in the editor's title section and
inside the Testrunner. We look up the Failure Details to see the reason for this failure and we realize
that we still have to implement the assert-statements in the test case type. (In place of the asserts, a
runtime exception is generated, whose message shows up here). So now we're going to fix this:

© Faktor Zehn AG Software Tests with Faktor-IPS 13

public class PremiumComputationTest extends IpsTestCase2 {
//...

/**
 * Executes the business logic to be tested.
 *
 * @generated NOT
 */
public void executeBusinessLogic() {
 inputHomeContract.computePremium();
}

/**
 * Executes the checks (asserts), i.e., matches the expected
 * values against the actual values.
 *
 * @generated NOT
 */
public void executeAsserts(IpsTestResult result) {
 assertEquals(expectsHomeContract.getNetPremiumPm(),
 inputHomeContract.getNetPremiumPm(),
 result);
}

Figure 17: The test case execution with the Testrunner fails

Testing with Faktor-IPS Using Home Insurance as an Example

Inside the executeBusinessLogic() method we call the business logic to be tested:
To do this, we first call the computePremium() method on the input instance. Faktor-IPS ensures
that the instance is provided with the current test case's input value at runtime. We implement the
checks in the executeAsserts(...) method. In our case we want to check if the expected net
premium is equal to the computed net premium. To do this, we use the assert* methods of the
IpsTestCase2 class. Remember that @generated must be followed by NOT so that the code you
added manually is not overridden!

Now we will run our test case again. The green bars inside both the Test Case Editor and the
TestRunner show us that the expected result and the computed result are the same.

Let's make a cross check by changing the expected result to 200EUR. The test case fails. In the
Failure Details you can see that the computed value of 196 EUR is not the same as the expected
value.

© Faktor Zehn AG Software Tests with Faktor-IPS 14

Figure 18: A successful test

Testing with Faktor-IPS Using Home Insurance as an Example

Unfortunately, the error message doesn't yet tell us which attribute it is referring to. In this case, its
not a problem as we have got only one expected value, but there can be be cases where you want to
compare multiple attributes in one test case – for example, the individual premiums per coverage
and the total premium. To get more detailed information about the failure, you can pass the
assert* statements a reference to the attribute. So we pass two additional parameters; the first one
is a string that identifies the test object and the second one is the name of the incorrect attribute. If
there are multiple instances of an object in the test, they have to be suffixed by a hash (#) sign
followed by an index of the instance, where the index numbers start by 0, as in ExtraCoverage#0
for the first instance of the ExtraCoverage object. The implementation for the netPremiumPm
attribute in our example will then look as follows:

© Faktor Zehn AG Software Tests with Faktor-IPS 15

/**
 * Executes the checks (asserts), i.e., matches the expected
 * values against the actual values.
 *
 * @generated NOT
 */
public void executeAsserts(IpsTestResult result) {
 assertEquals(expectedHomeContract.getNetPremiumPm(),
 inputHomeContract.getNetPremiumPm(),
 result,
 "HomeContract#0",
 IHomeContract.PROPERTY_NETPREMIUMPM);
}

Figure 19: The test case fails

Testing with Faktor-IPS Using Home Insurance as an Example

If we execute the test case again, (still with the „wrong“ expected result), the respective attribute
will also be highlighted in red on the user interface and a message in the Failure Details will tell us
exactly which attribute it is referring to:

So now we have completely implemented a test case type and created and run a test case.

Special case: Testing Derived Attributes
So far, we have implemented the comparison logic in the test case type based on the comparison of
member variables of the test objects. In the Input instance, we had the attribute computed, while in
the Expected instance, we entered it into the Test Editor. Then we compared the attributes of both
instances. The netPremiumPm attribute we used so far, is a derived attribute for which a member
variable is generated. The value of this variable is computed by explicitly calling a method (in this
case inputHomeContract.computePremium()). This type of derived attributes can be tested just
like mutable attributes.

In Faktor-IPS we may also define derived attributes that are computed „on the fly“ each time the
getter method gets called. No member variable is generated for these attributes. Thus, they
constitute a special case for test implementations because in our Expected instance, we don't have
any member variable that can possibly be used in a comparison operation.

The home contract's ratingDistrict is such an attribute. We will now create a new test case type
(named RatingDistrictTest) in order to verify the rating district computation based on the zip code.

We define the attributes zipCode and effectiveFrom of the type HomeContract as input parameters
and we enable the Requires Product Component3 checkbox for HomeContract. Now we attach a new

3 In the home contents example the RatingDistrict is independent of the selected product, whereas our implementation
in the basic tutorial uses the related product component to get a reference to the RuntimeRepository from which the
RatingDistrict_Table is loaded. While the RatingDistrict discovery doesn't care about which product is assigned in
the test case, we make the home contract configurable so that our implementation in the test case type can work. In
practice, it is conceivable to have product-dependent or generation-dependent RatingDistrict tables, for example, to
account for changes over time.

© Faktor Zehn AG Software Tests with Faktor-IPS 16

Figure 20: The attribute that caused the error is highlighted in the Test Editor

Testing with Faktor-IPS Using Home Insurance as an Example

attribute called exptectedDistrict to the type HomeContract by clicking the Add button.

© Faktor Zehn AG Software Tests with Faktor-IPS 17

Figure 21: Attach the new attribute “expectedDistrict” to type HomeContract. Step 1

Testing with Faktor-IPS Using Home Insurance as an Example

Now save the test case type and open the Java class RatingDistrictTest that is generated
for it. In the Java source code you can access the value of “attached” attributes via
getExtensionAttributeValue(String attrName). Instead of hard coding the attribute name
you should use the constant that is generated for it. The following code section shows the details.

In order to verify this, we create a test case (RatingDistrictTest_1) based on the new test case type
and populate the test data for EffectiveFrom and ZipCode. In addition, we assign a home product

© Faktor Zehn AG Software Tests with Faktor-IPS 18

Figure 22: Attach the new attribute “expectedDistrict” to type HomeContract. Step 2

public class RatingDistrictTest extends IpsTestCase2 {
public final static String
 TESTATTR_HOMECONTRACT_EXPECTEDDISTRICT = "expectedDistrict";
 //...
 public void executeBusinessLogic() {
 // nothing to do (the logic to be tested is run by calling the getter)
 }

 /**
 * Executes the checks (asserts), i.e., matches the expected
 * values against the actual values.
 *
 * @generated NOT
 */
 public void executeAsserts(IpsTestResult result) {
 String expectedDistrict = (String) getExtensionAttributeValue(
 expectedHomeContract, TESTATTR_HOMECONTRACT_EXPECTEDDISTRICT);
 String computedDistrict = inputHomeContract.getRatingDistrict();
 assertEquals(expectsRatingDistrict, computedDistrict, result,
 "HomeContract#0", TESTATTR_HOMECONTRACT_EXPECTEDDISTRICT);

}
//...
}

Testing with Faktor-IPS Using Home Insurance as an Example

(e.g., HC-Compact 2009-01) to the contract. According to the rating district table we expect the
district VI for zip code 63066. After running the test, a green bar confirms that our test case is
correct.

© Faktor Zehn AG Software Tests with Faktor-IPS 19

Figure 23: A test for the rating district evaluation

Testing with Faktor-IPS Using Home Insurance as an Example

Creating Test Cases by Copying them
In the following example we will show you how to create and customize new tests by simply
copying them. We want to create a premium computation test for the product HC-Optimal 2009-01
instead of HC-Compact 2009-01.
To do this, we select the test case we want to copy - PremiumComputationTest1 - in the Model
Explorer and call New ► Copy Test Case ... from the context menu. The wizard shown in the next
figure guides us through the creation of the test case.

We give the test case a name and, using the radio button With different components, we decide that we
want to replace the product components of the source test case by other product components. As we
want our target test case to inherit the existing input values and the expected results, we leave both
Copy test values checkboxes enabled and click Next > to confirm our settings.

We are now able to cancel or replace product components. In order to replace a product component,
we select it in the left pane of the the structure view. As a result, the list in the right-hand pane now
displays all product components that are suitable for this relationship. We then select the new
product component and replace HC-Compact 2009-01 by HC-Optimal 2009-01 and
BaseCoverage-Compact 2009-01 by BaseCoverage-Optimal 2009-01, respectively.

© Faktor Zehn AG Software Tests with Faktor-IPS 20

Figure 24: Copy test case wizard, Page 1

Testing with Faktor-IPS Using Home Insurance as an Example

Once we click Finish to exit the wizard, the new test case will be created and opened in the Test
Case Editor.

© Faktor Zehn AG Software Tests with Faktor-IPS 21

Figure 25: Replacing product components in a test copy

Figure 26: A copied test case

Testing with Faktor-IPS Using Home Insurance as an Example

If we execute the test case, we get a deviation in our expected result because the HC-Optimal
product has, among others, different premiums than HC-Compact. However, there is a simple
means to accept the computed result as the expected result. We just have to click the Run test and
store differences icon:

The test case will now be run and the computed results will be imported in our test case. So this is a
straightforward approach to determine the expected result and to construct a correct test case.

© Faktor Zehn AG Software Tests with Faktor-IPS 22

Figure 27: Run test and store differences

Figure 28: The computed values have been applied to the test case

A JUnit-Adapter for Faktor-IPS Test Cases

A JUnit-Adapter for Faktor-IPS Test Cases
The Faktor-IPS Runtime includes an adapter to convert Faktor-IPS test cases into JUnit test cases or
test suites. This way, Faktor-IPS test cases can also be executed with Ant or Maven, because these
tools provide a suitable JUnit integration. At the same time, this enables effortless automatic
execution of Faktor-IPS test cases within a continuous integration environment.

We can use the following code to create an adapter that converts our Faktor-IPS test cases into a
JUnit test suite:

We create a RuntimeRepository populated with the product data and call the getIpsTest()
method to provide us a test suite with all the test cases stored in the repository. The
createJUnitTest(...) method of class IpsTestSuiteJUnitAdapter then takes this test suite
and makes it a JUnit test suite. If we execute the HomeContentsJUnitTest test class with the JUnit-
Testrunner, we can see how our Faktor-IPS test cases are executed and interpreted by JUnit.

© Faktor Zehn AG Software Tests with Faktor-IPS 23

Figure 29: Running a test adapter in the JUnit GUI

package org.faktorips.tutorial.test;
public class HomeContentsJUnitTest extends IpsTestSuiteJUnitAdapter {
 public static Test suite() throws ParserConfigurationException{
 IRuntimeRepository repositoryHome = new ClassloaderRuntimeRepository(
 HomeContentsJUnitTest.class.getClassLoader(),
 "org.faktorips.tutorial.productdata.internal");

return createJUnitTest(repositoryHome.getIpsTest(""));
}

}

Summary

Summary
In a typical Faktor-IPS project, approx. 60-80% of the business model are generated. This generated
part of the source code needs no further testing because it was already tested once and for all in the
course of the Faktor-IPS development. Tests for the remaining, custom made part of the source
code can be defined with JUnit or using the Faktor-IPS test functions. The following diagram shows
criteria that can help you to decide which approach is better suited under the given circumstances.

The test support in Faktor-IPS is based on the separation between test case types and the test cases
themselves. Test case types are defined by the application developer. As is the case with the
business object model, a model-driven approach ist used. This approach consists in modeling the
structure of the test data first and then generating the source code to read the test data of specific
test cases. The only thing that remains for the developer to do, is to call the functions he wants to
have tested and to match the actual results against the expected results.

Test cases with concrete test data can be created on the basis of a test case type. To do this, a
specific Test Case Editor is provided. You can execute test cases in the Testrunner and display any
differences that might show up. What's more, you can run one test case, multiple test cases, or all
test cases in a project.

Both the Test Case Editor and Testrunner are integrated into the product definition perspective of
Faktor-IPS and can easily be used by business users. This way, business users can take advantage of
a unified user interface for defining products and tests. It can be used to define and test new
products independently of the operational systems.

© Faktor Zehn AG Software Tests with Faktor-IPS 24

Figure 30: Decision criteria for test tool

 Number of test cases with the same logic but different test data

Te
st

 d
ef

in
iti

on
 b

y

few many

So
ftw

ar
e

D
ev

el
op

er
Bu

si
ne

ss
 U

se
r

JUnit-Test Cases

Faktor-IPS Test Cases

	Overview
	Conceptual Foundation
	Testing with Faktor-IPS Using Home Insurance as an Example
	A Test Case Type for the Premium Computation
	Creating a Test Case
	Special case: Testing Derived Attributes
	Creating Test Cases by Copying them

	A JUnit-Adapter for Faktor-IPS Test Cases
	Summary

